Note

The Ramsey numbers for disjoint unions of graphs

Hasmawati, E.T. Baskoro, H. Assiyatun

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (ITB), Jalan Ganesa 10
Bandung 40132, Indonesia

Received 23 June 2006; received in revised form 2 April 2007; accepted 11 April 2007

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. In this paper we investigate the Ramsey number of a disjoint union of graphs $R(\bigcup_{i=1}^{k} G_i, H)$. For any natural integer k, we contain a general upper bound, $R(kG, H) \leq R(G, H) + (k - 1)|V(G)|$. We also show that if $m = 2n - 4, 2n - 8$ or $2n - 6$, then $R(kS_n, W_m) = R(S_n, W_m) + (k - 1)n$. Furthermore, if $|G_i| > (|G_i| - |G_{i+1}|)(\chi(H) - 1)$ and $R(G_i, H) = (\chi(H) - 1)(|G_i| - 1) + 1$, for each i, then $R(\bigcup_{i=1}^{k} G_i, H) = R(G_k, H) + \sum_{i=1}^{k-1} |G_i|$.

© 2007 Published by Elsevier B.V.

Keywords: Graph; Ramsey number; Disjoint union of graphs

1. Introduction

Throughout this paper, all graphs are finite and simple. Let G be any graph with the vertex set $V(G)$ and the edge set $E(G)$. The order of G, written as $|G|$ denotes the number of vertices of G. The graph \overline{G}, the complement of G, is obtained from the complete graph on $|G|$ vertices by deleting the edges of G. The number of vertices in a maximum independent set of G is denoted by $\chi(G)$. A graph $H = (V', E')$ is a subgraph of G if $V' \subseteq V(G)$ and $E' \subseteq E(G)$. For $S \subseteq V(G)$, $G[S]$ represents the subgraph induced by S in G. If G is a graph and H is a subgraph of G, then denote $G[V(G) \setminus V(H)]$ by $G \setminus H$.

Given two graphs G and H, the Ramsey number $R(G, H)$ is defined as the smallest natural number n such that for any graph F on n vertices, either F contains G or \overline{F} contains H. Chvátal and Harary [6] established a useful and general lower bound on the exact Ramsey numbers $R(G, H)$ as follows.

Theorem A (Chvátal, [5]). Let G and H be two graphs (not necessarily different) with no isolated vertices. Then the following lower bound holds:

$$R(G, H) \geq (\chi(G) - 1)(n(H) - 1) + 1,$$

where $\chi(G)$ is the chromatic number of G and $n(H)$ is the number of vertices in the largest component of H.

1 Permanent address: Jurusan Matematika FMIPA, Universitas Hasanuddin (UNHAS), Jalan Perintis Kemerdekaan KM.10 Makassar 90245, Indonesia.

E-mail addresses: hasmawati@math.itb.ac.id (Hasmawati), ebaskoro@math.itb.ac.id, ebaskoro@dns.math.itb.ac.id (E.T. Baskoro), hilda@math.itb.ac.id (H. Assiyatun).

0012-365X/S - see front matter © 2007 Published by Elsevier B.V.

doi:10.1016/j.disc.2007.04.026

Please cite this article as: Hasmawati, et al., The Ramsey numbers for disjoint unions of graphs, Discrete Math. (2007), doi: 10.1016/j.disc.2007.04.026
This result of Chvátal and Harary has motivated various authors to determined the Ramsey numbers $R(G, H)$ for many combinations of graphs G and H, see the nice survey paper [9].

Let T_n be a tree on n vertices and let W_m be a wheel on $m + 1$ vertices that consists of a cycle C_m with one additional vertex being adjacent to all vertices of C_m. A star S_n is the graph on n vertices with one vertex of degree $n - 1$, called the center, and $n - 1$ vertices of degree 1.

There are several known results on Ramsey numbers for combination of stars and wheels were established. For instance, Surahmat et al. showed in [10] that for $n \geq 3$,

$$R(S_n, W_4) = \begin{cases} 2n + 1 & \text{if } n \text{ is even}, \\ 2n - 1 & \text{if } n \text{ is odd}. \end{cases}$$

They also showed that $R(S_n, W_3) = 3n - 2$ for $n \geq 3$. This result was strengthened by Chen et al. [4] who showed that this Ramsey number remains the same, even if m is odd and $n \geq m - 1 \geq 2$. For even m, Zhang and Zhang [12] established $R(S_n, W_6) = 2n + 1$ and

$$R(S_n, W_4) = \begin{cases} 2n + 1 & \text{if } n \text{ is odd}, \\ 2n + 2 & \text{if } n \text{ is even}. \end{cases}$$

In [7], Hasmawati et al. established the following theorem.

Theorem B (Hasmawati et al. [7]). If n is odd and $n \geq 5$, then

$$R(S_n, W_m) = \begin{cases} 3n - 4 & \text{if } m = 2n - 4, \\ 3n - 6 & \text{if } m = 2n - 6 \text{ or } 2n - 8. \end{cases}$$

In this paper, we study the Ramsey numbers for a disjoint union of graphs. Let G_i be any graph with vertex set V_i and edge set E_i, $i = 1, 2, \ldots, k$. The union $G = \bigcup_{i=1}^k G_i$ has the vertex set $V = \bigcup_{i=1}^k V_i$ and the edge set $E = \bigcup_{i=1}^k E_i$. The union of s vertex-disjoint copies of G is denoted by sG. The joint $G = G_1 + G_2$ has the vertex set $V = V_1 \cup V_2$ and the edge set $E = E_1 \cup E_2 \cup \{uv : u \in V_1, v \in V_2\}$.

In 1975, Burr et al. [3] determined the upper bound and the lower bounds on the Ramsey numbers of disjoint unions of graphs.

Theorem C (Burr et al. [3]). Let G and H be graphs of order n_1 and n_2, respectively. Then

$$n_1 s + n_2 t - D \leq R(sG, tH) \leq n_1 s + n_2 t - D + k,$$

where $D = \min(s\chi(G), t\chi(H))$ and k is a constant depending only on G and H.

We observe here that if $s = t = 1$, and the chromatic number $\chi(G)$ or $\chi(H)$ is at least 3, then the lower bound of Chvátal and Harary is better than the lower bound of Burr et al.

Recently, Baskoro et al. [2] determined the Ramsey numbers for multiple copies of a star versus a wheel and for a forest versus a complete graph. Their results are given in the following three theorems.

Theorem D (Baskoro et al. [2]). If m is odd and $3 \leq m \leq 2n - 1$, then $R(kS_n, W_m) = 3n - 2 + (k - 1)n$.

Theorem E (Baskoro et al. [2]). For $n \geq 3$,

$$R(kS_n, W_4) = \begin{cases} (k + 1)n & \text{if } n \text{ is even and } k \geq 2, \\ (k + 1)n - 1 & \text{if } n \text{ is odd and } k \geq 1. \end{cases}$$

Theorem F (Baskoro et al. [2]). Let $n_i > n_i + 1$ for $i = 1, 2, \ldots, k - 1$. If m is such that $n_i > (n_i - n_i + 1)(m - 1)$ for every i, then

$$R\left(\bigcup_{i=1}^k T_{n_i}, K_m\right) = R(T_{n_k}, K_m) + \sum_{i=1}^{k-1} n_i.$$
Motivated by these results, in this paper we gave the general upper bound and we consider the Ramsey numbers for multiple copies of stars kS_n versus a wheel W_m. We also consider a general form of Theorem F, in which the graphs are not restricted to be trees or complete graphs. The main results are presented in the following theorems.

Theorem 1. For connected graphs G, and H, and $k \geq 1$ $R(kG, H) \leq R(G, H) + (k - 1)|V(G)|$.

Theorem 2. If n is odd and $n \geq 5$, then $R(kS_n, W_m) = R(S_n, W_m) + (k - 1)n$ for $m = 2n - 4, 2n - 6$ or $2n - 8$.

Theorem 3. Let H and G_i be connected graphs with $|G_i| \geq |G_{i+1}|$, $i = 1, 2, \ldots, k - 1$. If $|G_i| > (|G_{i-1}| - |G_{i+1}|)(\chi(H) - 1)$ and $R(G_i, H) = (\chi(H) - 1)(|G_i| - 1) + 1$ for each i, then $R(\bigcup_{i=1}^{k} G_i, H) = R(G_k, H) + \sum_{i=1}^{k} |G_i|$.

2. The proofs of theorems

Proof of Theorem 1. Let G and H be connected, we show that $R(kG, H) \leq R(G, H) + (k - 1)|V(G)|$ applying an induction on k. It is trivial to see that the assertion holds for $k = 1$. Assume the theorem holds for any $r < k$. Let F be a graph with order $R(G, H) + (k - 1)|V(G)|$. Suppose \overline{F} contains no H. By induction hypothesis F contains $(k - 1)G$. Now, write $T = F \setminus (k - 1)G$. Thus, $|T| = R(G, H)$. Since \overline{T} contains no H, then T must contain G. Hence, F contains $(k - 1)G \cup T$. Therefore, we have $R(kG, H) \leq R(G, H) + (k - 1)|V(G)|$. □

Proof of Theorem 2. By Theorem 1, we have $R(kS_n, W_m) \leq R(S_n, W_m) + (k - 1)n$. For $m = 2n - 4$ we consider $F \cong K_{n-1} \cup K_{n-2}$. The graph F has $(3n - 5) + (k - 1)n$ vertices and contains no kS_n. Observe that \overline{F} contains no W_m. Hence, $R(kS_n, W_m) \geq (3n - 4) + (k - 1)n = R(S_n, W_m) + (k - 1)n$ for $m = 2n - 4$. In showing the lower bound for $m = 2n - 6$ or $2n - 8$, we use $F_1 \cong K_{n-2} \cup (n - 3)/2 K_2 + (n - 3)/2 K_2$. The graph F_1 has $(3n - 7) + (k - 1)n$ vertices and contains no kS_n. We observe that \overline{F} contains no W_m. Therefore, we have $R(kS_n, W_m) \geq (3n - 6) + (k - 1)n = R(S_n, W_m) + (k - 1)n$ for $m = 2n - 6$ or $2n - 8$. □

Proof of Theorem 3. Let $|G_i| = n_i$ for $i = 1, 2, \ldots, k$. We will show that $R(\bigcup_{i=1}^{k} G_i, H) = (\chi(H) - 1)(n_k - 1) + \sum_{i=1}^{k-1} n_i + 1$ if $R(G_i, H) = (\chi(H) - 1)(n_i - 1) + 1$. Consider $F \cong (\chi(H) - 2)K_{n-1} \cup K_s$ where $s = -1 + \sum_{i=1}^{k-1} n_i$. This graph F has $(\chi(H) - 1)(n_k - 1) + \sum_{i=1}^{k-1} n_i$ vertices and contains no $\bigcup_{i=1}^{k} G_i$. Furthermore, its complement contains no H. Then, we have $R(\bigcup_{i=1}^{k} G_i, H) \geq (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i$.

Next, we will show that $R(\bigcup_{i=1}^{k} G_i, H) \leq (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i$. First, we show that $R(G_1 \cup G_2, H) \leq (\chi(H) - 1)(n_1 - 1) + n_1 + 1$. Let F_1 be a graph with $|F_1| = (\chi(H) - 1)(n_1 - 1) + 1 + n_1$. Suppose $\overline{F_1}$ contains no H and let $n_1 - n_2 = q$. Then $n_2 = n_1 - q$ and $F_1 = [(\chi(H) - 1)(n_1 - q + 1) + 1] + n_1$. We can write $F_1 = [(\chi(H) - 1)(n_1 - 1) + 1 + n_1 - (n_1 - n_2)](\chi(H) - 1)$. Since $n_1 - (n_1 - n_2) > 0$, then $|F_1| \geq (\chi(H) - 1)(n_1 - 1) + 1 = R(G_1, H)$. Hence, F_1 contains G_1.

Write $T = F_1 \setminus G_1$. Thus, $|T| = (\chi(H) - 1)(n_2 - 1) + 1$. Since \overline{T} contains no H and $|T| = (\chi(H) - 1)(n_2 - 1) + 1$, it follows that T contains G_2. Therefore, F contains $G_1 \cup G_2$. Hence, we have $R(G_1 \cup G_2, H) \leq (\chi(H) - 1)(n_2 - 1) + n_1 + 1$.

Now, by induction, assume the theorem holds for any $r < k$, namely $R(\bigcup_{i=1}^{r} G_i, H) \leq (\chi(H) - 1)(n_r - 1) + 1 + \sum_{i=1}^{r-1} n_i$. We shall show that $R(\bigcup_{i=1}^{k} G_i, H) \leq (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i$.

Let F_2 be a graph with $|F_2| = (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i$. Suppose $\overline{F_2}$ contains no H. By induction, F_2 contains kG_k. Let $B = F_2 \setminus \bigcup_{i=1}^{k-1} G_i$ and $Q = F_2 \setminus B$. Then $|Q| = (\chi(H) - 1)(n_k - 1) + 1 = R(G_k, H)$. Consequently, Q contains G_k. So, F_2 contains $\bigcup_{i=1}^{k} G_i$. Therefore, $R(\bigcup_{i=1}^{k} G_i, H) \leq (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i + 1$.

Hence, we have $R(\bigcup_{i=1}^{k} G_i, H) = (\chi(H) - 1)(n_k - 1) + 1 + \sum_{i=1}^{k-1} n_i + 1$ or $R(\bigcup_{i=1}^{k} G_i, H) = R(G_k, H) + 1$. □

3. Remarks

In Table 1, we present the Ramsey numbers for some combinations of graphs which equal the lower bound of Chvátal and Harary [6]. We can use Theorem 3 to determine many other Ramsey numbers for disjoint unions.
Table 1
The Ramsey number $R(G, H)$

<table>
<thead>
<tr>
<th>G, H</th>
<th>$(\gamma(H) - 1)(n(G) - 1) + 1$</th>
<th>interval</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_n, W_5</td>
<td>$3n - 2$</td>
<td>$n \geq 3$</td>
<td>[1]</td>
</tr>
<tr>
<td>T_n, K_m</td>
<td>$(n - 1)(m - 1) + 1$</td>
<td>for any n, m</td>
<td>[5]</td>
</tr>
<tr>
<td>C_n, W_m</td>
<td>$3n - 2$</td>
<td>odd $m, m \geq 5, n \geq \frac{3m-9}{2}$</td>
<td>[10]</td>
</tr>
<tr>
<td>S_n, W_m</td>
<td>$3n - 2$</td>
<td>odd $m, n \geq 3, m \leq 2n - 1$</td>
<td>[7]</td>
</tr>
<tr>
<td>C_n, C_m</td>
<td>$2n - 1$</td>
<td>odd $m, 3 \leq m \leq n$</td>
<td>[9]</td>
</tr>
<tr>
<td>S_{1+n}, C_m</td>
<td>m</td>
<td>even $m, m \geq 2n$</td>
<td>[8]</td>
</tr>
</tbody>
</table>

of graphs $R(\bigcup_{i=1}^{n} G_i, H)$ from the ‘known’ Ramsey numbers $R(G_i, H)$’s, particularly as given in the following corollary.

3 Corollary 1.

1. For odd m, $m \leq 5$ and $n \leq 5m - 9/2$, $R(kC_n, W_m) = R(C_n, W_m) + (k - 1)n$.
2. For odd m and $3 \leq m \leq n$, $R(kC_n, C_m) = R(C_n, C_m) + (k - 1)n$.
3. For even m and $m \geq 2n$, $R(kS_{1+n}, C_m) = R(S_{1+n}, C_m) + (k - 1)n$.

Note that these disjoint unions of graphs may consists of different graphs. Thus, Theorem 3 can used to determine $R(k_1C_n \cup k_2S_n, W_5)$ for odd m, $m \geq 5$ and $n \geq (5m - 9)/2$, $R(k_1C_n \cup k_2T_n \cup k_3S_n, W_5)$, and if $n \geq 8$, then $R(k_1C_n \cup k_2T_{n-1} \cup k_3S_{n-3}, W_5)$, for some integers k, k_1, k_2 and k_3.

4. Uncited reference

[11]

Acknowledgment

The authors are thankful to the referees for a number of comments that helped to improve the presentation of the manuscript.

References

Please cite this article as: Hasmawati, et al., The Ramsey numbers for disjoint unions of graphs, Discrete Math. (2007), doi: 10.1016/j.disc.2007.04.026