On the Boundedness of Bessel-Riesz Operators on Generalized Morrey Spaces

H. Gunawan*

*http://personal.fmipa.itb.ac.id/hgunawan/

Analysis and Geometry Group
Bandung Institute of Technology
Bandung, INDONESIA

2016 International Conference of the Honam Mathematical Society
Jeonju, 16 – 18 June 2016
1 Abstract & Previous Works
Outline

1. Abstract & Previous Works
2. Introduction
Outline

1 Abstract & Previous Works
2 Introduction
3 Boundedness of I_α on Morrey Spaces
Outline

1. Abstract & Previous Works
2. Introduction
3. Boundedness of I_α on Morrey Spaces
4. Boundedness of $I_{\alpha,\gamma}$ on Morrey Spaces
Outline

1. Abstract & Previous Works
2. Introduction
3. Boundedness of I_{α} on Morrey Spaces
4. Boundedness of $I_{\alpha,\gamma}$ on Morrey Spaces
5. Acknowledgement
The talk will be about Bessel-Riesz operators, which may be viewed as a variant of Riesz potentials or fractional integral operators. We prove the boundedness of these operators on generalized Morrey spaces by using the usual dyadic decomposition, a Hedberg-type inequality, and the boundedness of Hardy-Littlewood maximal operator.

Our results reveal that the norm of Bessel-Riesz operators on such spaces is dominated by the norm of the associated kernels.
Abstract & Previous Works

Previous Works, Among Others . . .

For $\gamma \geq 0$ and $0 < \alpha < n$, define

$$I_{\alpha,\gamma} f(x) := \int_{\mathbb{R}^n} K_{\alpha,\gamma}(x - y) f(y) \, dy,$$

for every $f \in L^p_{loc}(\mathbb{R}^n)$, $p \geq 1$, where

$$K_{\alpha,\gamma}(x) := \frac{|x|^{\alpha-n}}{(1 + |x|)^\gamma}, \quad x \in \mathbb{R}^n.$$

$I_{\alpha,\gamma}$ is called Bessel-Riesz operator, while $K_{\alpha,\gamma}$ is called Bessel-Riesz kernel.
Hardy-Littlewood-Sobolev Inequality for I_α

For $\gamma = 0$, $I_{\alpha,0} =: I_\alpha$ is known as the Riesz potential or fractional integral operator.

For $0 < \alpha < n$, the fractional integral operator I_α is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, i.e. there exists a constant $C = C_{p,q} > 0$ such that

$$\|I_\alpha f\|_{L^q} \leq C \|f\|_{L^p}, \quad f \in L^p(\mathbb{R}^n),$$

provided that $1 < p < \frac{\alpha}{n}$ and $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

This result is due to Hardy & Littlewood and Sobolev, and the above inequality is known as Hardy-Littlewood-Sobolev inequality.
Morrey Spaces

For $1 \leq p \leq q$, the (classical) Morrey space $M^p_q := M^p_q(\mathbb{R}^n)$ is defined as the set of all locally integrable functions f on \mathbb{R}^n for which

$$
\|f\|_{M^p_q} := \sup_{a \in \mathbb{R}^n, r > 0} |B(a, r)|^{1/q} \left(\frac{1}{|B(a, r)|} \int_{B(a, r)} |f(y)|^p dy \right)^{1/p} < \infty.
$$

Here $B(a, r)$ denotes the ball in \mathbb{R}^n centered at a with radius r, and $|B(a, r)| = c \cdot r^n$ denotes its volume.

Note: If $p = q$, then $M^p_q = L^q$.

Moreover, M^p_q is a Banach space.
Inclusion Property of Morrey Spaces

For $1 \leq p_1 \leq p_2 \leq q < \infty$, the following inclusions hold:

$$L^q = M_q^q \subseteq M_q^{p_2} \subseteq M_q^{p_1} \subseteq M_q^1.$$

Moreover, if $1 < p_1 < p_2 < q$, then the inclusions are strict.
For $0 < \alpha < n$, the fractional integral operator I_α is bounded from M^p_q to M^s_t, i.e. there exists $C = C_{p,q,s,t}$ such that

$$\|I_\alpha f\|_{M^s_t} \leq C \|f\|_{M^p_q},$$

provided that $1 < p \leq q < \frac{n}{\alpha}$, $1 < s \leq t < \infty$, $\frac{1}{t} = \frac{1}{q} - \frac{\alpha}{d}$, and $\frac{p}{q} = \frac{s}{t}$.

This result is due to D. Adams (1975) and F. Chiarenza & M. Frasca (1987).
Generalized Morrey Spaces

For $1 \leq p < \infty$ and a certain function $\phi : (0, \infty) \rightarrow (0, \infty)$, the \textit{generalized Morrey space} $M^p_\phi = M^p_\phi(\mathbb{R}^d)$ consists of f for which

$$\|f\|_{M^p_\phi} := \sup_{a \in \mathbb{R}^n, r > 0} \frac{1}{\phi(r)} \left(\frac{1}{|B(a, r)|} \int_{B(a, r)} |f(x)|^p \, dx \right)^{1/p} < \infty.$$

Here ϕ is nonincreasing and $r \mapsto \phi(r)^p r^n$ is nondecreasing on $(0, \infty)$. Consequently, ϕ satisfies the \textit{doubling condition}: $\exists C > 0$ s.t.

$$\frac{1}{C} \leq \frac{\phi(r)}{\phi(u)} \leq C \text{ whenever } \frac{1}{2} \leq \frac{r}{u} \leq 2.$$

Note that if $\phi(r) := r^{-n/q}$ for some $q > p$, then $M^p_\phi = M^p_q$ — the classical Morrey spaces.
For $0 < \alpha < n$, the fractional integral operator I_α is bounded from M^p_ϕ to M^q_ψ, i.e. there exists $C = C_{p,q,\phi,\psi} > 0$ such that
\[
\|I_\alpha f\|_{M^p_\phi} \leq C \|f\|_{M^q_\psi}, \quad f \in M^p_\phi(\mathbb{R}^n),
\]
provided that $1 < p < \frac{n}{\alpha}$, $\int_r^\infty \frac{\phi(u)}{u} \, du \leq C \phi(r)$, and $\phi(r) \leq C r^\beta$ for every $r > 0$, $q = \frac{\beta p}{\alpha + \beta}$, and $\psi(r) = \phi(r)^{\frac{p}{q}}$ for every $r > 0$.

This result is obtained by G. & Eridani (2009).
In the next section, we shall reprove the boundedness of $I_{\alpha,\gamma}$ for $\gamma > 0$ on generalized Morrey spaces using a Hedberg-type inequality and the boundedness of Hardy-Littlewood maximal operator M on these spaces.

Theorem 3.1

(Nakai) Let M be given by $Mf(x) := \sup_{B \ni x} \frac{1}{|B|} \int_B |f(y)| \, dy$. Then, for $1 < p \leq \infty$, we have

$$\|Mf\|_{M_p^\phi} \leq C \|f\|_{M_p^\phi}, \quad f \in M_p^\phi(\mathbb{R}^n).$$

Our aim is to show that the norm of Bessel-Riesz operators is dominated by the norm of their kernels on (generalized) Morrey spaces.
Properties of the Kernel

Let $0 < \alpha < n$ and $\gamma > 0$ (we shall always assume this, unless otherwise stated).

Then $K_{\alpha,\gamma} \in L^t(\subseteq M^{s,t}, 1 \leq s \leq t)$ for $\frac{n}{n+\gamma-\alpha} < t < \frac{n}{n-\alpha}$, with

$$
\| K_{\alpha,\gamma} \|_{L^t} \sim \left(\sum_{k=1}^{\infty} \frac{(2^k R)^{(\alpha-n)t+n}}{(1 + 2^k R)^{\gamma t}} \right)^{\frac{1}{t}}
$$

where $R > 0$ is fixed but arbitrary.
By Young’s inequality, we have

$$\|I_{\alpha,\gamma} f\|_{L^q} \leq \|K_{\alpha,\gamma}\|_{L^t} \|f\|_{L^p}$$

for $1 \leq p < t'$, $\frac{n}{n+\gamma-\alpha} < t < \frac{n}{n-\alpha}$, and $\frac{1}{q} = \frac{1}{p} + \frac{1}{t} - 1$.

Hence $\|I_{\alpha,\gamma}\|_{L^q} \leq \|K_{\alpha,\gamma}\|_{L^t}$ for those q and t.

On Morrey spaces, however, we do not have Young’s inequality. Thus, to prove the boundedness of $I_{\alpha,\gamma}$, we have to use a different approach.
The Boundedness of $I_{\alpha, \gamma}$ on Morrey Spaces

Using a Hedberg-type inequality and the boundedness of Hardy-Littlewood maximal operator on (classical) Morrey spaces, we obtain

Theorem 4.1

(Idris, G., Lindiarni, Eridani) *For $0 < \alpha < n$ and $\gamma > 0$, we have*

$$\| I_{\alpha, \gamma} f \|_{M_{q_2}^{p_2}} \leq C \| K_{\alpha, \gamma} \|_{M_t^s} \| f \|_{M_{q_1}^{p_1}}, \quad f \in M_{q_1}^{p_1}(\mathbb{R}^n),$$

for $1 < p_1 \leq q_1 < t'$, $1 \leq s \leq t$, $\frac{n}{n+\gamma-\alpha} < t < \frac{n}{n-\alpha}$,

$$\frac{1}{p'_2} = \frac{1}{p_1} - \frac{q_1}{p_1 t'}, \quad \frac{1}{q_2} = \frac{1}{q_1} - \frac{1}{t'}.$$
The Boundedness of $I_{\alpha,\gamma}$ on Generalized Morrey Spaces

Theorem 4.2

If $\phi(r) \leq Cr^\beta$ for every $r > 0$, $-\frac{\alpha t'}{p_1} \leq \beta < -\alpha$, $1 < p_1 < t'$, and

$$\frac{n}{n+\gamma-\alpha} < t < \frac{n}{n-\alpha},$$

then we have

$$\left\| I_{\alpha,\gamma} f \right\|_{M_{\psi}^{p_2}} \leq C \left\| K_{\alpha,\gamma} \right\|_{M_s^{t'}} \left\| f \right\|_{M_{\phi}^{p_1}}, \quad f \in M_{\phi}^{p_1}(\mathbb{R}^n)$$

for $1 \leq s \leq t$, $p_2 = \frac{\beta p_1}{\alpha + \beta}$, and $\psi(r) = \phi(r)^{p_1/p_2}$.
Write $I_{\alpha,\gamma} f(x) := I_1(x) + I_2(x)$ for every $x \in \mathbb{R}^n$.

We estimate I_1 using dyadic decomposition as follow:

$$|I_1(x)| \leq \sum_{k=-\infty}^{-1} \int_{2^k R \leq |x-y| < 2^{k+1} R} \frac{|x-y|^{\alpha-n}|f(y)|}{(1 + |x-y|)^\gamma} \, dy$$

$$\leq C_1 \sum_{k=-\infty}^{-1} \frac{(2^k R)^{\alpha-n}}{(1 + 2^k R)^\gamma} \int_{2^k R \leq |x-y| < 2^{k+1} R} |f(y)| \, dy$$

$$= C_2 \mathcal{M} f(x) \sum_{k=-\infty}^{-1} \frac{(2^k R)^{\alpha-n+n/s}}{(1 + 2^k R)^\gamma} \left(2^k R\right)^{n/s'},$$

where $1 \leq s \leq t$.
By Hölder’s inequality, we have

\[|I_1(x)| \leq C_2 \mathcal{M} f(x) \left(\sum_{k=-\infty}^{-1} \frac{(2^k R)^{(\alpha-n)s+n}}{(1 + 2^k R)^{\gamma s}} \right)^{1/s} \left(\sum_{k=-\infty}^{-1} (2^k R)^n \right)^{1/s'} . \]

We also have

\[\sum_{k=-\infty}^{-1} \frac{(2^k R)^{(\alpha-n)s+n}}{(1 + 2^k R)^{\gamma s}} \lesssim \int_{0 <|x| < R} K_{s,\alpha,\gamma}^s(x) \, dx , \]

so that

\[|I_1(x)| \leq C_3 \mathcal{M} f(x) \left(\int_{0 <|x| < R} K_{s,\alpha,\gamma}^s(x) \, dx \right)^{1/s} R^{n/s'} \]

\[\leq C_3 \|K_{\alpha,\gamma}\|_{M_{s}^t} \mathcal{M} f(x) R^{n/t'} . \]
Next, we estimate I_2. By using Hölder’s inequality, we obtain

$$|I_2(x)| \leq C_4 \sum_{k=0}^{\infty} \frac{(2^k R)^{\alpha-n+n/p_1'}}{(1 + 2^k R)^\gamma} \left(\int_{2^k R \leq |x-y| < 2^{k+1} R} |f(y)|^{p_1} dy \right)^{1/p_1}.$$

It thus follows that

$$|I_2(x)| \leq C_5 \|f\|_{M_{\phi}^{p_1}} \sum_{k=0}^{\infty} \frac{(2^k R)^{\alpha} \phi(2^k R)}{(1 + 2^k R)^\gamma} \left(\int_{2^k R \leq |x-y| < 2^{k+1} R} dy \right)^{1/s} (2^k R)^{n/s}$$

$$\leq C_6 \|f\|_{M_{\phi}^{p_1}} \sum_{k=0}^{\infty} \phi(2^k R) (2^k R)^{n/t'} \left(\int_{2^k R \leq |x-y| < 2^{k+1} R} K_{\alpha,\gamma}^s (x - y) dy \right)$$

$$\leq C_6 \|f\|_{M_{\phi}^{p_1}} \sum_{k=0}^{\infty} \phi(2^k R) (2^k R)^{n/s-n/t} (2^k R)^{n/s-n/t}.$$
The Proof IV

Because $\phi(r) \leq C r^\beta$ and
\[
\left(\int_{2^k R \leq |x-y| < 2^{k+1} R} K_{\alpha,\gamma}^s(x-y) dy \right)^{1/s} \leq C R^{n/s-n/t} \leq \| K_{\alpha,\gamma} \|_{M^s_t}
\]
for every $k = 0, 1, 2, \ldots$, we get

\[
|I_2(x)| \leq C_7 \| K_{\alpha,\gamma} \|_{M^s_t} \| f \|_{M^p_1} \sum_{k=0}^{\infty} (2^k R)^{\beta+n/t'}
\]

\[
\leq C_8 \| K_{\alpha,\gamma} \|_{M^s_t} \| f \|_{M^p_1} R^\beta R^{n/t'}.
\]

From the two estimates, we obtain

\[
|I_{\alpha,\gamma} f(x)| \leq C_9 \| K_{\alpha,\gamma} \|_{M^s_t} \left(\mathcal{M} f(x) R^{n/t'} + \| f \|_{M^p_1} R^{n/t'+\beta} \right),
\]

for every $x \in \mathbb{R}^n$.
The Proof V

Now, for each \(x \in \mathbb{R}^n \), choose \(R > 0 \) such that \(R^{\beta} = \frac{\mathcal{M}f(x)}{\|f\|_{M^p_\phi}} \). Hence we get

\[
|I_{\alpha,\gamma}f(x)| \leq C_9 \|K_{\alpha,\gamma}\|_{M^s_t} \|f\|_{M^p_\phi}^{-\alpha/\beta} \mathcal{M}f(x)^{1+\alpha/\beta}.
\]

Put \(p_2 := \frac{\beta p_1}{\alpha+\beta} \). For arbitrary \(a \in \mathbb{R}^n \) and \(r > 0 \), we have

\[
\left(\int_{|x-a|<r}|I_{\alpha,\gamma}f(x)|^{p_2} \, dx\right)^{1/p_2} \leq C_9 \|K_{\alpha,\gamma}\|_{M^s_t} \|f\|_{M^p_\phi}^{1-p_1/p_2} \left(\int_{|x-a|<r}|\mathcal{M}f(x)|^{p_1} \, dx\right)^{1/p_2}.
\]
Divide both sides by $\phi(r)^{p_1/p_2} r^{n/p_2}$ and take the supremum over $a \in \mathbb{R}^n$ and $r > 0$ to get the following Hedberg’s type inequality:

$$\| I_{\alpha, \gamma} f \|_{M_{\psi}^{p_2}} \leq C_{10} \| K_{\alpha, \gamma} \|_{M_{\hat{t}}^{s}} \| f \|_{M_{\phi}^{p_1}}^{1-p_1/p_2} \| \mathcal{M} f \|_{M_{\phi}^{p_1}}^{p_1/p_2},$$

where $\psi(r) := \phi(r)^{p_1/p_2}$.

With the boundedness of the maximal operator on generalized Morrey spaces (Nakai’s Theorem), we obtain the desired result:

$$\| I_{\alpha, \gamma} f \|_{M_{\psi}^{p_2}} \leq C_{p_1, \phi} \| K_{\alpha, \gamma} \|_{M_{\hat{t}}^{s}} \| f \|_{M_{\phi}^{p_1}}^{p_1/p_2}.$$

The proof is complete.
This work is joint with M. Idris and Eridani, and is supported by ITB Research and Innovation Program 2015.

Currently we are working on the generalized Bessel-Riesz operator \(I_{\rho, \gamma} \) for some function \(\rho : (0, \infty) \rightarrow (0, \infty) \), supported by ITB Research and Innovation Program 2016.

THANK YOU VERY MUCH FOR YOUR ATTENTION!