Surfaces with Minimum Energy and Prescribed Nodes

H. Gunawan*

*http://personal.fmipa.itb.ac.id/hgunawan/

Analysis and Geometry Group
Bandung Institute of Technology
Bandung, INDONESIA

IWOPA 2008, 8-12 September 2008
Outline

1 Introduction: The Problem
Outline

1. Introduction: The Problem
2. The Method
Outline

1. Introduction: The Problem
2. The Method
3. The Result

H. Gunawan (*ITB, Bandung)
Energy Minimizing Surfaces
8 September 2008
Outline

1. Introduction: The Problem
2. The Method
3. The Result
4. Related Works
Outline

1 Introduction: The Problem
2 The Method
3 The Result
4 Related Works
5 Acknowledgement
Isn’t It an Interesting Surface?
The 2-D Problem

Find a cts fn $u : [0, 1]^2 \rightarrow \mathbb{R}$ which minimizes an energy functional $E_\alpha(u)$ and satisfies the boundary and interior conditions:
The Energy Functional $E_\alpha(u)$

For $\alpha \geq 0$, the energy functional $E_\alpha(u)$ is given by

$$E_\alpha(u) := \int_0^1 \int_0^1 |(-\Delta)^{\frac{\alpha}{2}} u(x, y)|^2 dx \, dy,$$

where $-\Delta$ denotes the positive definite Laplacian in \mathbb{R}^2.

Note: $(-\Delta)^{\frac{\alpha}{2}}$ is known as the fractional Laplacian of order α. We shall define $(-\Delta)^{\frac{\alpha}{2}} u$ through its Fourier series (later).
For $\alpha = 2$, the energy functional $E_2(u)$ given by

$$E_2(u) := \int_0^1 \int_0^1 |(-\Delta)u(x, y)|^2 \, dx \, dy,$$

represents the curvature (or the strain energy of bending) of u.
The Interior Conditions

In general, the interior conditions may be prescribed at $M \times N$ points (x_i, y_j), say $u(x_i, y_j) = c_{ij}$, $i = 1, \ldots, M$, $j = 1, \ldots, N$. E.g., for $M = N = 3$:
Since we are looking for a function $u(x, y)$ which vanishes at the boundary, we write $u(x, y)$ as a double Fourier sine series, that is,

$$u(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} \sin m\pi x \sin n\pi y,$$

where $a_{m,n}$’s are the Fourier coefficients.
For $\alpha = 2$, we have

\[
(-\Delta)u(x, y) = \pi^2 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (m^2 + n^2) a_{m,n} \sin m\pi x \sin n\pi y.
\]

We see here that the Fourier coefficients of $(-\Delta)u$ are $\pi^2(m^2 + n^2)$ \times the Fourier coefficients of u.
The Method

The Definition of \((-\Delta)^{\frac{\alpha}{2}} u\)

For \(\alpha \geq 0\), we define \((-\Delta)^{\frac{\alpha}{2}} u\) by

\[
(-\Delta)^{\frac{\alpha}{2}} u(x, y) = \pi^{\alpha} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (m^2 + n^2)^{\frac{\alpha}{2}} a_{m,n} \sin m\pi x \sin n\pi y.
\]
Parseval’s Identity

Theorem:

\[
\int_0^1 \int_0^1 \left| (\Delta)^{\frac{\alpha}{2}} u(x, y) \right|^2 dx \, dy = \frac{\pi^{2\alpha}}{4} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (m^2 + n^2)^\alpha a_{m,n}^2.
\]
The problem may now be reformulated as follows: find a cts fn
\[u(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} \sin m\pi x \sin n\pi y \] which minimizes
\[E_\alpha(u) := \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (m^2 + n^2)^\alpha a_{m,n}^2 \]
and satisfies the interior conditions
\[u(x_i, y_j) = c_{ij}, \quad i = 1, \ldots, M, \quad j = 1, \ldots, N. \]
An Existence and Uniqueness Theorem

Theorem:

The problem has a unique continuous solution if and only if $\alpha > 1$.
Note about the Proof

The main ideas of the proof are to (1) work in the right space, (2) find an initial function that satisfies the condition, and then (3) compute the orthogonal complement of this function on the subspace of functions that vanish at the given nodes.

While the existence and the uniqueness of the solution follows from Hilbert space arguments, the continuity is guaranteed by the value of the exponent $\alpha > 1$.
Ingredients of the Proof

\[W := \{ u(x, y) = \sum_{m,n} a_{m,n} \sin m\pi x \sin n\pi y : \sum_{m,n} (m^2 + n^2)^{\alpha} a_{m,n}^2 < \infty \} \]

is a Hilbert space w.r.t. the inner product

\[\langle u, v \rangle := \sum_{m,n} (m^2 + n^2)^{\alpha} a_{m,n} b_{m,n}. \]

\[U := \{ u \in W : u(x_i, y_j) = c_{ij}, \ i = 1, \ldots, M, \ j = 1, \ldots, N \} \]

is a nonempty, closed and convex subset of \(W \).

\[V := \{ u \in W : u(x_i, y_j) = 0, \ i = 1, \ldots, M, \ j = 1, \ldots, N \} \]

is a closed subspace of \(W \).

The solution is given by \(u = u_0 - \text{proj}_V(u_0) \), where \(u_0 \) is an arbitrary member of \(U \).
For $1 < \alpha < 1.5$ and one interior point is prescribed, the solution looks like one shown at the beginning.

For $\alpha \geq 1.5$ or more interior points are prescribed, the solution may look like the following pictures.
The surface passing through (0.5,0.25,0.25) and (0.5,0.75,1.25) with minimum $E_2(u)$
The surface passing through \((0.5, 0.5, 1)\) with minimum \(E_{1.5}(u)\)
A surface passing through four prescribed points with minimum $E_{1.5}(u)$.

This work is joint with E. Rusyaman (Padjadjaran Univ., Bandung).