On the Product of N Chebyshev Systems

Lukita Ambarwati1,2 and Hendra Gunawan1

1ITB Bandung, 2Universitas Negeri Jakarta

http://personal.fmipa.itb.ac.id/hgunawan/

Analysis and Geometry Group
Bandung Institute of Technology
Bandung, Indonesia

AMIC 2010 & 6th EASIAM Conference
Kuala Lumpur, 22-24 June 2010
Introduction

The Product of 2 Chebyshev Systems

The Kronecker Product

The Product of N Chebyshev Systems

References
Find a cts fn $u : [0, 1]^2 \rightarrow \mathbb{R}$ which minimizes an energy functional

$$E_\alpha(u) := \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (m^2 + n^2)^\alpha a_{m,n}^2$$

and vanishes on the boundary and satisfies the interior conditions:

$$u(x_i, y_j) = c_{ij}, \quad i = 1, \ldots, M, \quad j = 1, \ldots, N,$$

where $0 < x_1 < \cdots < x_M < 1, \ 0 < y_1 < \cdots < y_N < 1$.
Last Talk in Brunei, 2009 [1]

Since we are looking for a function $u(x, y)$ which vanishes on the boundary, we write $u(x, y)$ as a double sine series, that is,

$$u(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} \sin m\pi x \sin n\pi y,$$

where $a_{m,n}$'s are the coefficients that we need to find.

The solution is obtained iteratively, where the initial approximation is obtained by solving the system of equations

$$\sum_{m=1}^{M} \sum_{n=1}^{N} a_{m,n} \sin m\pi x_i \sin n\pi y_j = c_{ij}, \ i = 1, \ldots, M, \ j = 1, \ldots, N.$$
Last Talk in Brunei, 2009 [1]

The surface like in the following picture

may be obtained as the solution to our minimization problem, for some value of α.

Lukita Ambarwati1,2 and Hendra Gunawan1

1ITB Bandung

On the Product of N Chebyshev Systems
Let A be a compact Hausdorff topological space that contains at least m points.

A set of continuous, complex or real valued, functions \(\{\phi_1, \ldots, \phi_m\} \) on A is called a **Chebyshev System** on A if it satisfies the following condition $[2]$: For arbitrary m distinct points x_1, \cdots, x_m in A, we have

\[
\det[\phi_j(x_i)]_{m \times m} \neq 0,
\]

where $[\phi_j(x_i)]_{m \times m}$ is a matrix of order $m \times m$ (with $\phi_j(x_i)$ being the element on i^{th}-row and j^{th}-column).
For each \(n = 1, 2, \ldots, N \), let \(\Phi_n = \{ \phi_{n1}, \phi_{n2}, \ldots, \phi_{nm_n} \} \) be a Chebyshev system on Hausdorff topological space \(A_n \).

Then we are interested in how the tensor product \(\Phi \) of the \(N \) Chebyshev systems \(\Phi_n \)’s may be used to interpolate data on the Cartesian product \(A := A_1 \times A_2 \times \cdots \times A_N \).

We are aware that, in general, the product \(\Phi \) is not a Chebyshev System on \(A \) [5]. However, given certain set of data on \(A \), we may interpolate them using functions generated by \(\Phi \).
Our entry point is that the tensor product Φ of two Chebyshev Systems $\Phi_1 := \{\phi_{11}, \phi_{12}, \cdots, \phi_{1m_1}\}$ on A_1 and $\Phi_2 := \{\phi_{21}, \phi_{22}, \cdots, \phi_{2m_2}\}$ on A_2, that is, the set of functions

$$\Phi_{ij}(x_1, x_2) := \phi_{1i}(x_1)\phi_{2j}(x_2), \ i = 1, \ldots, m_1; \ j = 1, \ldots, m_2,$$

can interpolate data $\{(x_{1i}, x_{2j}, c_{ij}) : i = 1, \ldots, m_1; \ j = 1, \ldots, m_2\}$ on $A_1 \times A_2 \times F$, where $F = \mathbb{C}$ or \mathbb{R} [4].
Example

For example, on the unit square $[0, 1]^2$, the set of functions

$$1, x, x^2, y, xy, x^2y, y^2, xy^2, x^2y^2,$$

may be viewed as the tensor product of the Chebyshev System

$$\{1, x, x^2\}$$

on $[0, 1]$ with itself.

This set can interpolate data \{$(x_i, y_j, c_{ij}) : i, j = 1, 2, 3$\}.

Lukita Ambarwati1,2 and Hendra Gunawan1
ITB Bandung
On the Product of N Chebyshev Systems
The set \(\{(x_i, y_j) : i, j = 1, 2, 3\} \) forms a \(3 \times 3 \) ‘grid’ on \([0, 1]^2\):
In general, suppose we are given an $m_1 \times m_2$ grid of points on $A_1 \times A_2$ which is the Cartesian product of $\{x_{11}, x_{12}, \ldots, x_{1m_1}\}$ and $\{x_{21}, x_{22}, \ldots, x_{2m_2}\}$, and arbitrary real numbers c_{ij}, $i = 1, \ldots, m_1$, $j = 1, \ldots, m_2$. Then, the interpolation problem

$$\sum_{i=1}^{m_1} \sum_{j=1}^{m_2} a_{ij} \Phi_{ij}(x_{1i}, x_{2j}) = c_{ij}, \ i = 1, \ldots, m_1; \ j = 1, \ldots, m_2,$$

has a unique solution, which is generated by Φ.

Moreover, given some data on a subset of the grid, we can always find a function from Φ that interpolates the related nodes.
It is due to the fact that the **Kronecker product** \(M := M_1 \otimes M_2 \), where \(M_1 := [\phi_{1k}(x_{1i})]_{m_1 \times m_1} \) and \(M_2 := [\phi_{2l}(x_{2j})]_{m_2 \times m_2} \), is non-singular — since we have [3]

\[
\text{det } M = (\text{det } M_1)^{m_2}(\text{det } M_2)^{m_1}.
\]

Note. The Kronecker Product is given by the formula

\[
M_1 \otimes M_2 = \begin{bmatrix}
\phi_{11}(x_{11})M_2 & \phi_{11}(x_{12})M_2 & \ldots & \phi_{11}(x_{1m_1})M_2 \\
\phi_{12}(x_{11})M_2 & \phi_{12}(x_{12})M_2 & \ldots & \phi_{12}(x_{1m_1})M_2 \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1m_1}(x_{11})M_2 & \phi_{1m_1}(x_{12})M_2 & \ldots & \phi_{1m_1}(x_{1m_1})M_2
\end{bmatrix}
\]

The matrix is a block matrix of size \(m_1m_2 \times m_1m_2 \).
Example

For example, suppose we want to interpolate \((\frac{1}{3}, \frac{1}{3}, 1), (\frac{2}{3}, \frac{1}{3}, \frac{1}{2}), (1, \frac{1}{3}, 1), (\frac{2}{3}, \frac{2}{3}, 1), \text{ and } (\frac{2}{3}, 1, 1)\) using the tensor product of the Chebyshev System \(\{1, x, x^2\}\) on \([0, 1]\) with itself. The data are given on a subset of a \(3 \times 3\) grid:
We know that there will be a function of the form

\[u(x, y) = a_{11} + a_{12}x + a_{13}x^2 + a_{21}y + a_{22}xy + a_{23}x^2y + a_{31}y^2 + a_{32}xy^2 + a_{33}x^2y^2 \]

that interpolates the given nodes. Substituting the values from the given nodes and reducing into a row echelon form, we get

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & -\frac{2}{9} & -\frac{4}{27} & 0 & -\frac{2}{27} & -\frac{4}{81} & \frac{7}{2} \\
0 & 1 & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{9} & 0 & -6 \\
0 & 0 & 1 & 0 & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{9} & \frac{9}{2} \\
0 & 0 & 0 & 1 & \frac{2}{3} & \frac{4}{9} & 0 & 0 & 0 & -\frac{17}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \frac{2}{3} & \frac{4}{9} & \frac{15}{4}
\end{bmatrix}
\]
There are many functions that interpolate the given nodes, one of them is:

\[
u(x, y) = \frac{7}{2} - 6x + \frac{9}{2} x^2 - \frac{17}{4} y + \frac{15}{4} y^2.
\]
Recall that if M_1 and M_2 are non-singular matrices of size $m_1 \times m_1$ and $m_2 \times m_2$ respectively, then the Kronecker product of M_1 and M_2, namely $M = M_1 \otimes A_2$, is non-singular too. This follows from the formula (1):

$$\det M = (\det M_1)^{m_2} (\det M_2)^{m_1}.$$

The Kronecker product is an associative operation on matrices, that is, if K, L and M are the three matrices, then

$$(K \otimes L) \otimes M = K \otimes (L \otimes M).$$

Hence we may write $K \otimes L \otimes M$ for $(K \otimes L) \otimes M$ or $K \otimes (L \otimes M)$.

Lukita Ambarwati1,2 and Hendra Gunawan1

1ITB Bandung, 2Universitas Negeri Jakarta

Analysis and Geometry Group Bandung Institute of Technology Bandung, Indonesia
The following theorem generalizes the formula (1):

Theorem

Let $N \geq 2$ be an integer. For $n = 1, 2, \ldots, N$, let M_n be non-singular matrices of size $m_n \times m_n$. Then we have

$$\det(M_1 \otimes M_2 \otimes \cdots \otimes M_N) = \prod_{n=1}^{N} (\det M_n) \frac{P}{m_n}$$

(2)

where $P = \prod_{n=1}^{N} m_n$.

Lukita Ambarwati1,2 and Hendra Gunawan1
1ITB Bandung,
2Universitas Negeri Jakarta
Proof.

The theorem is proved by mathematical induction. We know that the formula is true for $N = 2$. Suppose it is true for $N \geq 2$. Then, we have

$$\det(M_1 \otimes \cdots \otimes M_N \otimes M_{N+1})$$

$$= \det((M_1 \otimes \cdots \otimes M_N) \otimes M_{N+1})$$

$$= \{\det(M_1 \otimes \cdots \otimes M_N)\}^{m_N+1} (\det M_{N+1})^{P_N}$$

$$= \prod_{n=1}^{N} (\det M_n) \frac{P_N m_{N+1}^{m_N+1}}{m_n} (\det M_{N+1}) \frac{P_N m_{N+1}}{m_{N+1}}$$

$$= \prod_{n=1}^{N+1} (\det M_n) \frac{P_{N+1} m_{N+1}}{m_{N+1}}$$,

where $P_N = \prod_{n=1}^{N} m_n$.

\[\square\]
Consequently, we have:

Corollary

For \(n = 1, 2, \ldots, N \), let \(\Phi_n = \{\phi_{n1}, \phi_{n2}, \ldots, \phi_{nm_n}\} \) be a Chebyshev System on \(A_n \). Then the tensor product \(\Phi \) of the \(\Phi_n \)'s, namely the set of functions of the form

\[
\left\{ \prod_{n=1}^{N} \phi_{nj_n}(x_n): j_n = 1, \ldots, m_n; n = 1, \ldots, N \right\}
\]

can interpolate data on (arbitrary subsets of) any \(m_1 \times \cdots \times m_N \) grid in the Cartesian product \(A_1 \times \cdots \times A_N \).
Remark

It is interesting to note that our result connects the three types of products: the Cartesian product (of the domains), the tensor product (of the functions), and the Kronecker product (of the matrices).

A full paper on this topic is being written and will be submitted to a suitable journal when it is ready.

